Integrating Health Research: Mechanisms to Populations

Elizabeth Blackwell Insititute for Health Research

bristol.ac.uk/blackwell 🔰 @EBIBristol

Background: Ruth Mitchell

Integrating fundamental bioscience and population health: integrating cell biology and epidemiology

Scope for engagement in the strand

Examples outputs

Antigen-specific peptide immunotherapy

Mouse model of multiple sclerosis - Experimental autoimmune encephalomyelitis (EAE)

Tg4 (B10.PL, H-2u) - TCR specific for myelin basic protein MBP Ac1-9

David Wraith

Tg4.IL-4R-/-

Dose escalation protocol MBP Ac1-9

@EBIBristol

5

Mitchell et al, PLOSONE, 2017

Th1 Th2 Th2 Th2 Th2 Th2

Mitchell et al, PLOSONE, 2017

Transitioning into epidemiology

University of BRISTOL

Elizabeth Blackwell Institute for Health Research

Current students

MRC | Integrative Epidemiology Unit

Elizabeth Blackwell Institute for Health Research

Postgraduate Discipline Hopping Fellowships

Lavinia Paternoster

George Davey Smith

Nic Timpson

Avon Longitudinal Study of Parents and Children (ALSPAC)

outhmead DHA Frenchay DHA istol & Weston

Depth of data:

- Ongoing data collection
- Multi-generational data sets

•

Follow-up

Longitudinal data

UK Biobank

- 500,000 individuals
- Age 40 69 at recruitment

Biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain

Multiple sclerosis PheWAS in UK Biobank

Multiple sclerosis PheWAS in UK Biobank

Two minute MR primer – George Davey Smith

https://www.youtube.com/watch?v=LoTgfGotaQ4

Two sample Mendelian Randomization

Mendelian Randomization – MR Base

www.mrbase.org

European population

African population in UK Biobank

Cell

Resource

The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

Graphical Abstract

Authors

William J. Astle, Heather Elding, Tao Jiang, ..., Willem H. Ouwehand, Adam S. Butterworth, Nicole Soranzo

Correspondence

jd292@medschl.cam.ac.uk (J.D.), david.roberts@ndcls.ox.ac.uk (D.J.R.), who1000@cam.ac.uk (W.H.O.), asb38@medschl.cam.ac.uk (A.S.B.), ns6@sanger.ac.uk (N.S.)

Outcome – Malaria

ARTICLE

https://doi.org/10.1038/s41467-019-13480-z OPEN

Insights into malaria susceptibility using genomewide data on 17,000 individuals from Africa, Asia and Oceania

Malaria Genomic Epidemiology Network

17,000 severe malaria cases and population controls from 11 countries

Investigating the causal relationship of neutrophils on malaria

Investigating the causal relationship of neutrophils on malaria

Causes & potential mechanisms for prevention

Effective treatment

Visscher et al., ., Am J Hum Genet, 2016

"the process of applying ideas, insights, and discoveries generated through scientific inquiry to the treatment or prevention of human disease."

Cross-talk between epidemiology and laboratory science

Population Health Sciences

- Whole body human system
- Human population
- Inform laboratory science

Causal trait/causal gene to then take into further analysis

Cross-talk between epidemiology and laboratory science

Bioscience

٠	Pathways	Disease or trait
٠	Proteins	 of
•	Model organisms	interest

- Extremely difficult to instrument activity in an intracellular pathway
- Population Health Sciences limited by the data that can be collected

Genetic epidemiology – Protein GWAS

Article | Published: 06 June 2018 Genomic atlas of the human plasma proteome Benjamin B. Sun, Joseph C. Maranville, [...] Adam S. Butterworth Nature 558, 73-79 (2018) | Download Citation ± 14k Accesses | 52 Citations | 409 Altmetric | Metrics » Abstract Although plasma proteins have important roles in biological

processes and are the direct targets of many drugs, the

genetic factors that control inter-individual variation in

bristol.ac.uk/blackwell

Download	Ŧ				
Sections	Figures	References			
Abstract					
Main					
Main					
Main Genetic archite	cture of the p	lasma proteo			
Main Genetic archite Overlap of eQT	cture of the p Ls and pQTLs	lasma proteo			
Main Genetic archite Overlap of eQT <i>trans</i> pQTLs ide	cture of the p Ls and pQTLs entify pathway	lasma proteo ys to disease			

Human Molecular Genetics, 2015, Vol. 24, No. R1 R93-R101

doi: 10.1093/hmg/ddv263 Advance Access Publication Date: 9 July 2015 Invited Review

INVITED REVIEW

@EBIBristol

Genetics of human metabolism: an update

Gabi Kastenmüller^{1,4}, Johannes Raffler¹, Christian Gieger^{2,3} and Karsten Suhre^{1,5,*}

¹Institute of Bioinformatics and Systems Biology, ³Research Unit of Molecular Epidemiology and ³Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, ⁴German Center for Diabetes Research, Neuherberg, Germany and ³Department of Physiology and Biophysics, Well Cornell Medical College–Qatar, Doha, Qatar

"To whom correspondence should be addressed at: Weill Cornell Medical College—Qatar, Qatar Foundation—Education City, PO Box 24144, Doha, Qatar. Tel: +974 4492 8482; Iznail: karsten@vuhre.fr

Genetic epidemiology – Protein GWAS

Patin et al., Nature Immunology, 2018

Gene – SNPs – search for these in published GWAS

https://www.gtexportal.org/home/

bristol.ac.uk/blackwell

@EBIBristol

Genetic epidemiology –'look up'

□Gene expression for IL10 (ENSG00000136634.5)

Data Source: GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)

Data processing and normalization ()

https://www.gtexportal.org/home/

@EBIBristol

Genetic epidemiology –'look up'

	Copy CSV Search: S				Show 10 v entries			
	Gencode Id 🗘	Gene Symbol	Variant Id	SNP \$	P- Value ≎	NES €	Tissue 🗘	Actions \diamond
1	ENSG0000136634.5	IL10	chr1_206771300_T_C_b38	rs1518111 dbSNP 🗹	4.3e-9	0.25	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
TLs	ENSG0000136634.5	IL10	chr1_206771516_A_C_b38	rs1518110 dbSNP 🗹	4.3e-9	0.25	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
TLs	ENSG00000136634.5	IL10	chr1_206773062_T_G_b38	rs1800872 dbSNP 🗗	4.4e-9	0.25	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG00000136634.5	IL10	chr1_206773289_A_G_b38	rs1800871 dbSNP 🗹	4.4e-9	0.25	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG00000136634.5	IL10	chr1_206771966_A_C_b38	rs3024490 dbSNP 🗹	5.1e-9	0.25	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG00000136634.5	IL10	chr1_206770888_A_G_b38	rs1554286 dbSNP 🗹	2.9e-8	0.24	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG0000136634.5	IL10	chr1_206782306_T_C_b38	rs6686931 dbSNP 🗹	4.4e-7	0.22	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG0000136634.5	IL10	chr1_206759348_T_C_b38	rs76178457 dbSNP 🗹	0.000017	-0.31	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG00000136634.5	IL10	chr1_206775294_C_T_b38	rs6703630 dbSNP 🗹	0.000031	0.18	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	ENSG00000136634.5	IL10	chr1_206753553_A_G_b38	rs74630871 dbSNP 🗹	0.000043	-0.36	Whole Blood	eQTL violin plot, IGV eQTL Browser, Multi-tissue eQTL Plot
	Showing 1 to 10 of 19 en	tries					First	Previous 1 2 Next Last

Тор

Gene Expression Exon Expression

Single-Tissue eQT

Single-Tissue sQTLs

https://www.gtexportal.org/home/

bristol.ac.uk/blackwell

Transcriptome-wide association studies: integrates GWAS and gene expression datasets to identify gene-trait associations

Genetic epidemiology – integrating eQTL and GWAS data

@EBIBristol

IHG Volume 99, Issue 6, 1 December 2016, Pages 1245-1260

Article

Colocalization of GWAS and eQTL Signals **Detects** Target Genes

Farhad Hormozdiari ¹, Martijn van de Bunt ^{2, 3}, Ayellet V. Segrè ⁴, Xiao Li ⁴, Jong Wha J. Joo ¹. Michael Bilow¹, Jae Hoon Sul ^{5, 6}, Sriram Sankararaman^{1, 8}, Bogdan Pasaniuc^{7, 8}, Eleazar Eskin^{1, 8}

SORT1 Expression (Liver) and Total Cholesterol

SORT1 Expression (Blood) and Total Cholesterol

Pers et al., Nature Communications, 2015 Hormonozdiari et al., Am J Hum Genet, 2016 Taylor et al., Genome Medicine, 2019

Mendelian Randomization – tissue specific MR

ARTICLE

https://doi.org/10.1038/s41467-019-13921-9 OPEN

A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome

Tom G. Richardson 6 1*, Gibran Hemani 1, Tom R. Gaunt 1, Caroline L. Relton & George Davey Smith 1

Mendelian Randomization – tissue specific MR

An atlas of tissue-dependent Mendelian randomization associations

Input Type:

GWAS

- O PheWAS
- Cross-tissue comparison (Gene)

Cross-tissue comparison (Variant)

Gene-centric tissue-wide evaluation:

Please select a gene:

Age at first live birth (UK Biobank)

Summary
This web application can be used to investigate associations between genome-wide gene expression and 395 complex traits by applying Mendelian randomization and genetic
colocalization². Analyses have been undertaken using gene expression derived from whole blood made available by the eQTLGen consortium² (n=21,644), as well as 48 different tissue
types from the GTEx project². Findings from this web application can help uncover associations yet to be detected by genome-wide association studies and also investigate tissuespecific effects between gene expression and complex traits.

Instructions

•

Description

To query results from our atlas please select parameters on the left hand side of this page before clicking the 'Search Atlas' button. This will generate results in the Tables of Results.

There are 4 ways to query the results of our atlas depending on the Input Type selected:

GWAS - Genome-wide association study. Select a complex trait and tissue of Interest from the drop-down menus before clicking the 'Search Atlas' button. This will evaluate all genomewide MR associations and plot results using a manhattan plot⁴.

PheWAS - Phenome-wide association study. Type in a gene and select a tissue of interest from the drop-down menus and click the 'Search Atlas' button. This will query the findings between your target gene and all traits in our atlas. An interactive piot⁵ will be generated to display-log10 p-values multiplied by the corresponding clinection of effect from each result. As such, positive associations reside above -log10-0, whereas negative associations reside below. Polits are grouped and coloured based on their corresponding traits subcategory.

Cross-tissue comparison (Gene) - Tissue-wide association study. Enter a gene and select a complex trait from the drop-down menus to investigate associations across all available tissue types. Results are plotted using an interactive plot⁵ as described above, except points are grouped and coloured based on tissue types.

Cross-tissue comparison (Variant) - Tissue-wide association study: Type a genetic variant (e.g. rs5882) and select a complex trait from the drop-down menus to evaluate associations across all available tissues in the atlas. If your variant is not an expression quantitative trait loci (eQTL) then a warning message will appear. As above, an interactive plot⁵ will be displayed with points coloured based on tissue types.

The Download button can be used to download a comma-separate value (csv) file for the results you have queried.

Table of Results Manhattan plot PheWAS plot Cross-tissue plot

http://mrcieu.mrsoftware.org/Tissue_MR_atlas/

Mendelian Randomization protein specific MR

Graph DB beat

Proteome PheWAS browser

Click to view the list of proteins or traits.

IL23R

Search

Results presented here can also be downloaded programmatically using the EpiGraphDB API.

📀 or 😳: passed or failed test respectively; 9: warning, results might be unreliable; 🕲: data are missing or not applicable.

Basic summary	MR results	Single SNP MR resu	Its SNP information	Sensitivity an	alysis			
± ALL RESULT	s						FILTER:	
		Combined Instruments Tests			Individual Instrument Tests			
Protein 🔁 🛊	MRBase	Protein associates with ▲ trait €	Low heterogeneity 🕄 [‡]	rsID ≑	Cis acting instrument 🕄 🗘	Correct causal direction 🕄	Instrument associates with one protein 🕄	Shared causal ≑ variant ੳ
Inflammatory bowel disease								
IL23R	294	2.213e-166	0	rs11581607	0	0	0	0
Crohn's disease								
IL23R	12	5.801e-149	0	rs11581607	0	0	0	0
Ulcerative colitis								
IL23R	970	4.342e-62	0	rs11581607	0	0	0	•
Non-cancer illness code self-reported: psoriasis								
IL23R	UKB-a:100	9.475e-10	0	rs11581607	0	•	0	•

https://www.epigraphdb.org/

Cross-talk between epidemiology and laboratory science

Munafó & Davey Smith, Nature. 2018 Jan 25;553(7689):399-401

Scope for engagement in the strand

for Health Research

Funding opportunities

Our research focus

→ Mental health Research strands

→ Bioethics, Biolaw and Biosociety

→ Medical Humanities

→ Bristol AMR

→ Digital Health

Health Data Science

Global Public Health
 Global Publi

Mechanisms to Populations

- Discrete piece of work ٠
- Facilitate collaborations •
- Community building events •
- Potentially one-off seminars ٠

Integrating Health Research: Mechanisms to Elizabeth Blackwell Institute 🛛 🛜 **Populations**

Building research capacity at the University of Bristol in the interdisciplinary space between fundamental biosciences and population health sciences.

Purpose

The aim of the 'Integrating Health Research: Mechanisms to Populations' research strand is to promote and facilitate interdisciplinary research between fundamental bio-scientists and population health scientists. The strand will bring together the ground-breaking research into disease mechanisms being carried out in the fundamental biosciences with the state-of-the-art methodologies and applied techniques in the population health sciences. The ultimate objective is to enhance the understanding of disease processes and accelerate the arrival of therapies into the clinic.

The strand will provide a formal structure for promoting and facilitating interdisciplinary research between fundamental bioscience and population health science through dedicated researcher capacity with the necessary skills in locating, accessing and analysing population health data as well as providing a space to foster collaborations. In doing so our aim is to support interdisciplinary grant applications and publications.

Fundamental bioscience is the study of the molecular processes that form the basis of life. Research in fundamental bioscience at the University of Bristol is diverse and

Example output: contributions to papers

HDL and Renal Cell Carcinoma

Mendelian Randomization

Tissue expression

Genes involved in Cholesterol uptake				
Gene	in p-adj			
SCARB1	16.80653	4.66E-208		
LDLR	-2.39152	9.65E-14		
VLDLR	1.55408	4.29E-11		
CD36	2.16743	3.87E-44		

Mouse models and cell biology

Accepted for publication in Cancer Discovery.

18

E Vincent, C Bull, C Simon, M Johansson, N Skuli

Example output: Team collaboration

about us news research publications for the public event

Read more

bristol.ac.uk/blackwell

@EBIBristol

Repeat clinics (December 2020; April 2021 and June 2021)

Measurable traits

BMI General Health Asthma **Biosamples**

T cells Antibodies Pseudoviruses

Cases	123
Matched controls	103
Random controls	98

L Wooldridge, L Rivino, K Northstone, N Timpson

Example output: Grant applications

Finding new osteo-anabolic drug targets for osteoporosis

bristol.ac.uk/blackwell

@EBIBristol

Dylan Bergen

- Are in Bioscience or in population health?
- What stage of collaborating are you at?
- What engagement do people want?

Email: ebi-mechanisms-populations@bristol.ac.uk

Website: www.bristol.ac.uk/blackwell/health-research/research-strands/mechanisms-to-populations/

Acknowledgements

Emma Vincent and Chrissy Hammond

Pete Cullen & Paul Martin Chrissy Hammond, Kate Nobes David Wraith Wraith lab

Lavinia Paternoster Nic Timpson George Davey Smith MRC Integrative Epidemiology Unit

Elizabeth Blackwell Insititute for Health Research